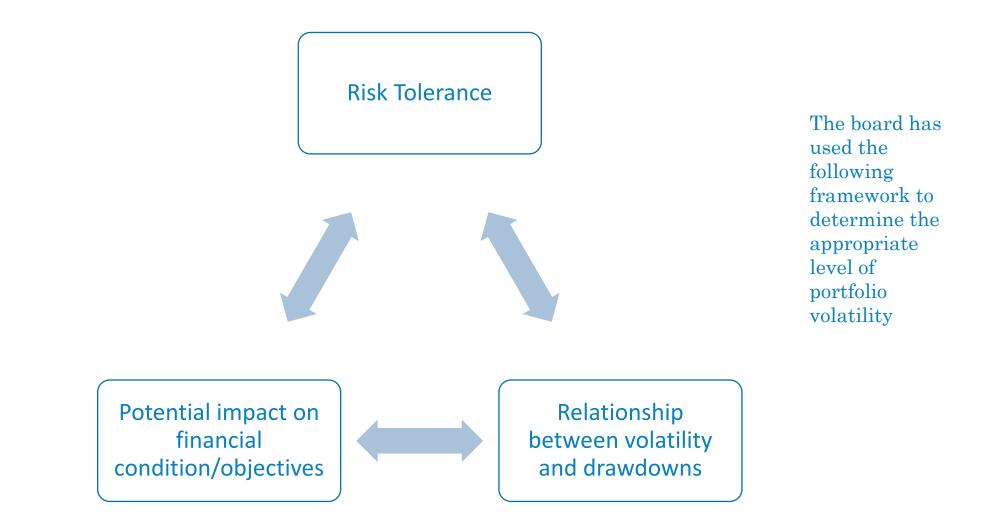


FEBRUARY 23, 2021

Risk Allocation Study

City of San Jose Federated Employees' Retirement System


Summary

- Risk limits were established by the board by analyzing the relationship between:
 - Risk tolerance
 - Volatility and drawdowns
 - Potential impact on financial conditions and plan objectives
- Versus current strategic asset allocation, the set of asset allocation mixes being considered today:
 - Fall within the limit for Board risk as defined in IPS except for portfolio with higher growth allocation
 - Increases in volatility come from taking more equity risk as demonstrated by equity beta
 - Duration risk is not a significant risk among mixes considered as it is relatively short across all mixes
 - None of the mixes provide very different outcomes in stress scenarios or shocks

2

Risk limit framework

Volatility, drawdowns and risk tolerance

Aggressive Conservative Average 3 worst **Portfolio Volatility** 95% VaR 95% CVaR 99% VaR 99% CVaR scenarios 8% Risk -14% -17% -18% -20% -19% Conservative 9% Risk -22% -15% -18% -19% -21% -24% 10% Risk -16% -19% -21% -23% 11% Risk -18% -22% -24% -27% -28% Aggressive 12% Risk -20% -25% -27% -31% -32% 13% **Risk** -22% -28% -30% -34% -36% 14% Risk -24% -29% -31% -36% -39% 15% Risk -25% -31% -33% -38% -40%

Risk Tolerance

The board's risk tolerance determines the appropriate level of risk and how expected drawdowns will be estimated

Risk Tolerance

4

Actuarial projections

volatility and drawdowns

elationship betwe

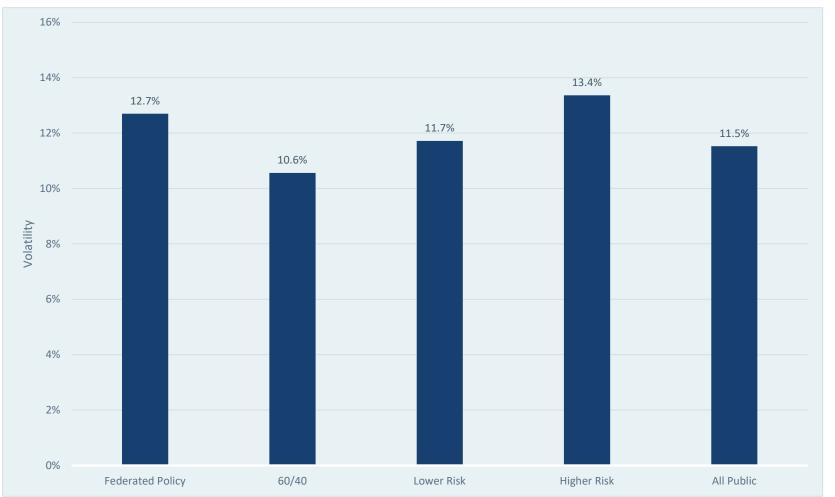
Potential impact on financial condition/objectives

Based on discussions with Verus and Cheiron the board determined there were three actuarial metrics to include in the formulation of their risk limits: Funded Ratio, City Contributions, and Interest cost. Applying drawdowns in 5% increments ranging from 20% to 40%, we can determine the impact on the three metrics.

							Funded	City	Interest
			City		Interest		Ratio	Contributions	Cost
		Funded Ratio	Contributions		Cost		change	change	Change
Single Year	Baseline	53%	\$	235	\$	111	0%	\$0	\$0
	-20%	45%	\$	292	\$	143	-8%	\$57	\$32
	-25%	42%	\$	303	\$	149	-11%	\$67	\$38
	-30%	40%	\$	313	\$	155	-13%	\$78	\$45
	-35%	37%	\$	324	\$	162	-16%	\$89	\$51
	-40%	35%	\$	335	\$	168	-18%	\$99	\$58

		Funded Ratio (end of period)	City Contributions	Interest Cost	Funded Ratio change	City Contributions change	Interest Cost Change
(ē	Baseline	67%	\$ 2,111	\$ 1,038	0%	\$0	\$0
r iš	-20%	55%	\$ 2,431	\$ 1,346	-12%	\$320	\$308
/ear lative)	-25%	53%	\$ 2,491	\$ 1,403	-14%	\$380	\$366
1 3	-30%	51%	\$ 2,550	\$ 1,461	-17%	\$439	\$423
	-35%	48%	\$ 2,610	\$ 1,518	-19%	\$499	\$481
Ċ)	-40%	46%	\$ 2,670	\$ 1,576	-21%	\$559	\$538

The Single Year table identifies the maximum or minimum for each category.

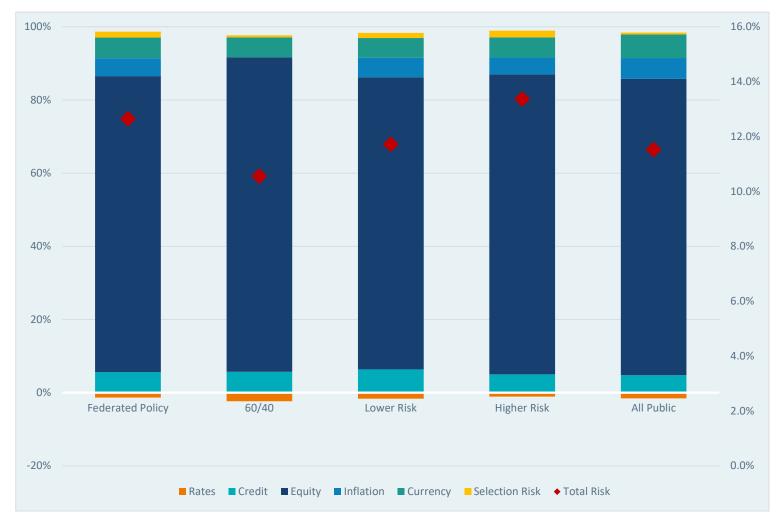

The 10-year Cumulative table identifies the end of period financial situation and total dollar amount for each category

Source: Actuarial metrics provided by Cheiron. Dollar amounts in millions

5

Board risk operating zone limit

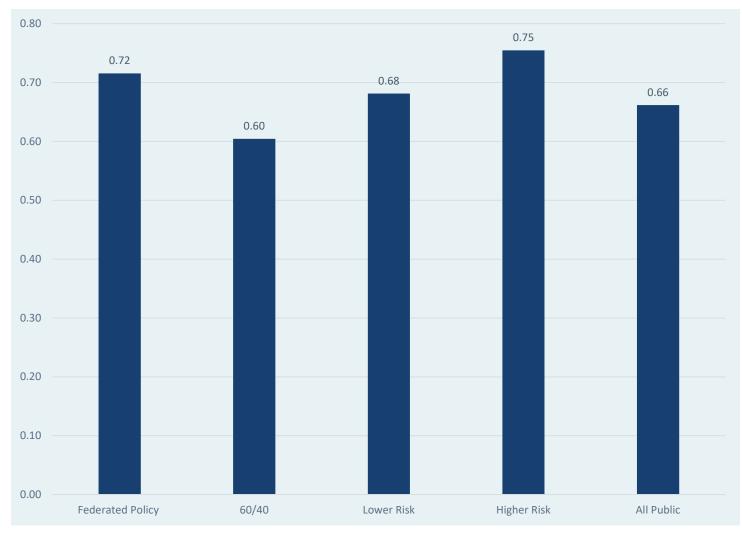
From IPS, Board risk operating zone limit is when portfolio forecast risk is >12%.


The current policy falls modestly outside of this limit as current volatility is elevated versus one year ago when the policy was adopted.

6

Data from MSCI BarraOne, 303XL model. All Public is based upon InvestorMetrics Public Funds >\$1B fund universe.

Risk decomposition

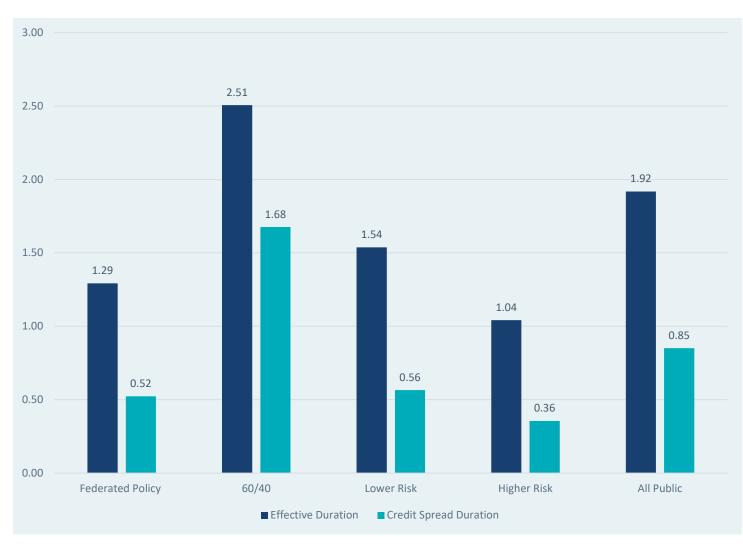

Equity factor risk remains the largest contributor to volatility across all the mixes considered. We see marginal differences in credit, inflation, and currency factors.

Data from MSCI BarraOne, 303XL model.

Verus⁷⁷

City of San Jose Risk Allocation February 23, 2021

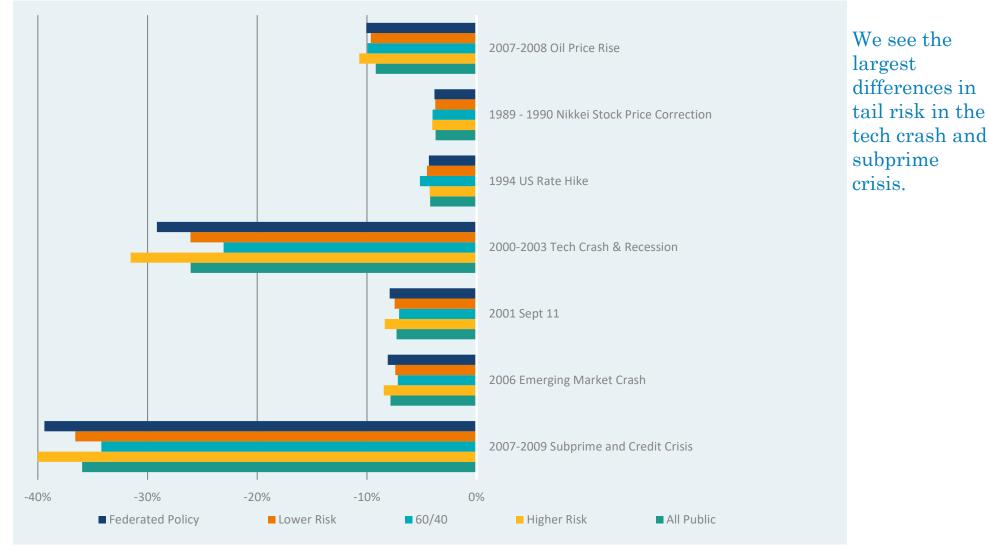
Equity Beta



The highest risk mix has slightly higher equity beta then the current Federated policy. The lower risk mix would slightly reduce equity beta (.04 years).

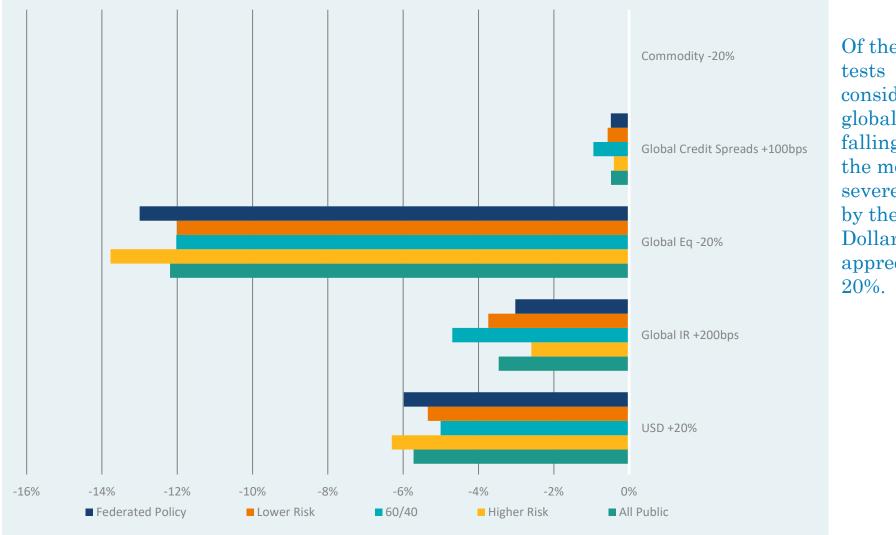
Equity beta is measured relative to the MSCI ACWI IMI index.

Duration


The 60/40 portfolio has the highest effective and credit spread duration among the mixes.

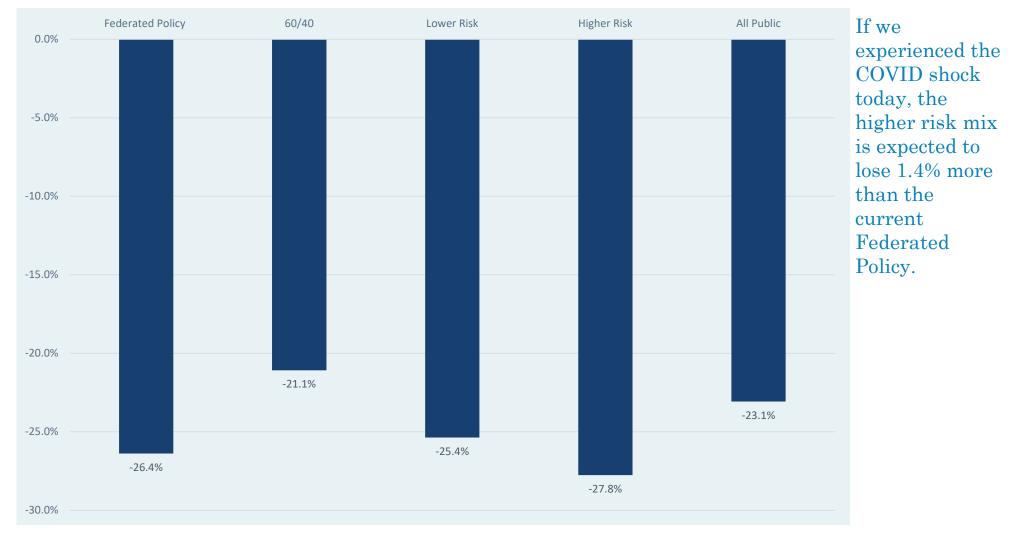
The higher risk mix reduces portfolio duration by 0.25 years.

Source: MSCI BarraOne


Scenario analysis

Data from MSCI BarraOne.

Stress tests



Of the stress tests considered, global equities falling 20% is the most severe, followed by the U.S. Dollar appreciating 20%.

Data from MSCI BarraOne.

COVID 19 Shock

COVID 19 shock represents the peak to trough return from 2/19/2020 to 3/23/2020.

Appendix – Asset mixes

	Federated	~~ (~~			
Growth	Policy 75	60/40 60	Lower Risk 70	Higher Risk 79	All Public 66
Public Equity	49.0	60.0	46.0	51.0	57.0
Private Equity	12.0	0.0	10.0	14.0	0.0
Private Debt	3.0	0.0	3.0	3.0	0.0
Growth Real Estate	3.0	0.0	3.0	3.0	0.0
Private Real Assets	3.0	0.0	3.0	3.0	3.0
Emerging Market Bonds (Hard)	1.5	0.0	1.5	1.5	1.5
Emerging Market Bonds (Local)	1.5	0.0	1.5	1.5	1.5
High Yield Bonds	2.0	0.0	2.0	2.0	3.0
Low Beta	8	0	6	8	5
Market Neutral Strategies	3.0	0.0	1.0	3.0	0.0
Immunized Cash Flows	5.0	0.0	5.0	5.0	5.0
Other	17	40	24	13	29
US TIPS	2.0	0.0	2.0	2.0	4.0
Core Real Estate	5.0	0.0	5.0	5.0	8.0
Core Bonds	8.0	40.0	12.0	4.0	15.0
Commodities	0.0	0.0	2.0	0.0	0.0
Long-Term Government Bonds	2.0	0.0	3.0	2.0	2.0
Total Allocation	100	100	100	100	100
	Federated				
	Policy	60/40	Lower Risk	Higher Risk	All Public
Mean Variance Analysis					
Forecast 10 Year Return	5.7	4.1	5.4	6.0	4.8
Standard Deviation	13.0	10.5	11.9	14.0	12.0
Return/Std. Deviation	0.4	0.4	0.5	0.4	0.4
1st percentile ret. 1 year	-20.3	-17.5	-18.8	-21.8	-19.5
Sharpe Ratio	0.47	0.41	0.48	0.46	0.43

Appendix - Downside measures

We have discussed three methods of determining downside risk (or tail risk) for the investment portfolio.

<u>Value at risk (VaR)</u>: VaR calculates the maximum loss expected over a 1-year period given a specified degree of confidence

<u>Conditional Value at Risk (CVaR)</u>: CVaR measures the expected loss if VaR is exceeded. It takes the average of the tail observations

Average of three worst historical scenarios: We simulate the portfolio through historic scenarios to determine the three worst periods and take the average of those scenarios.

Risk Metric	Description			
95% VaR	(95% Confidence) We don't expect the worst annual loss			
95% Van	to exceed			
99% VaR	(99% Confidence) we don't expect the worst annual loss			
99% Van	to exceed			
95% CVaR	(95% Confidence) If VaR is exceeded, the average			
95% CVar	expected loss			
99% CVaR	(99% Confidence) If VaR is exceeded, the average			
99% CVan	expected loss			
Avg. Scopario Drawdown	The average of the three worst historic scenarios			
Avg. Scenario Drawdown	measured in BarraOne			

There are three methods to calculate VaR: Historic, Parametric, and Monte Carlo. VaR calculations are conducted in BarraOne using Monte Carlo VaR.

