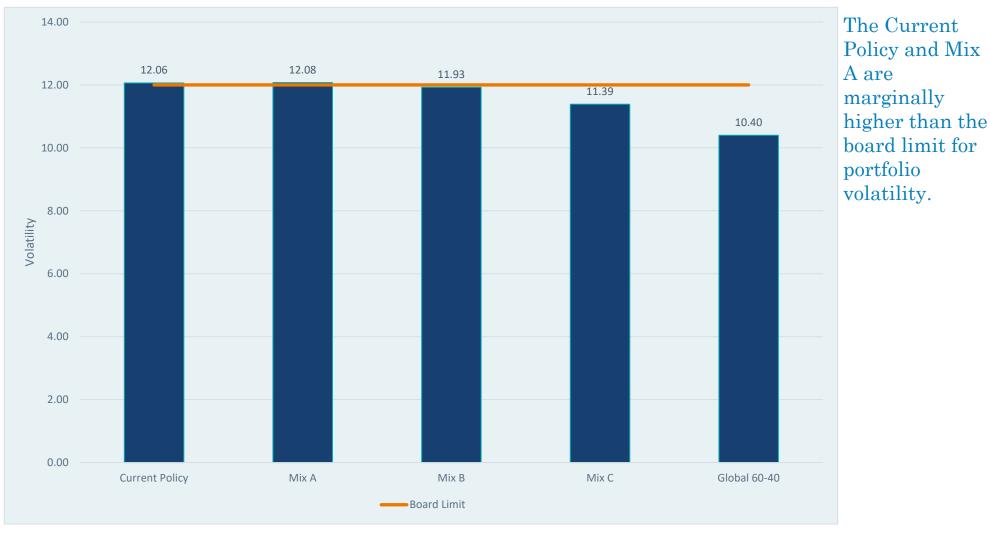


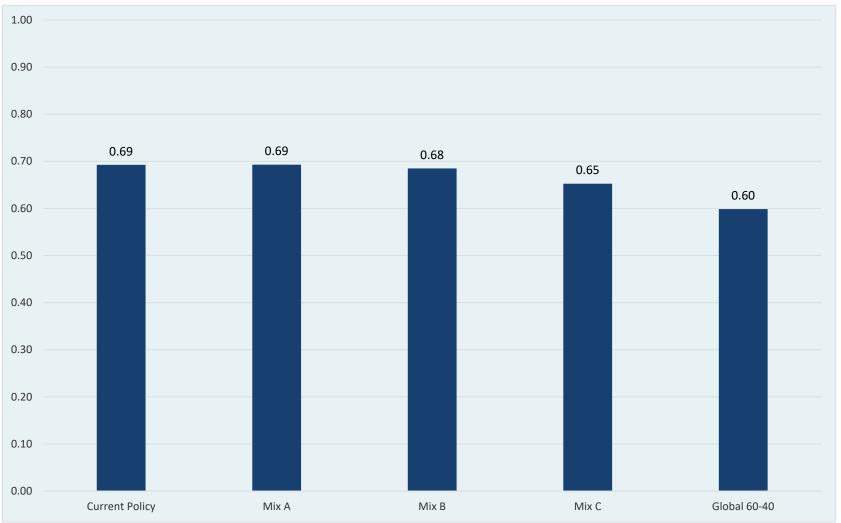
MARCH 1, 2023 Risk Allocation Study

City of San Jose Federated Employees' Retirement System

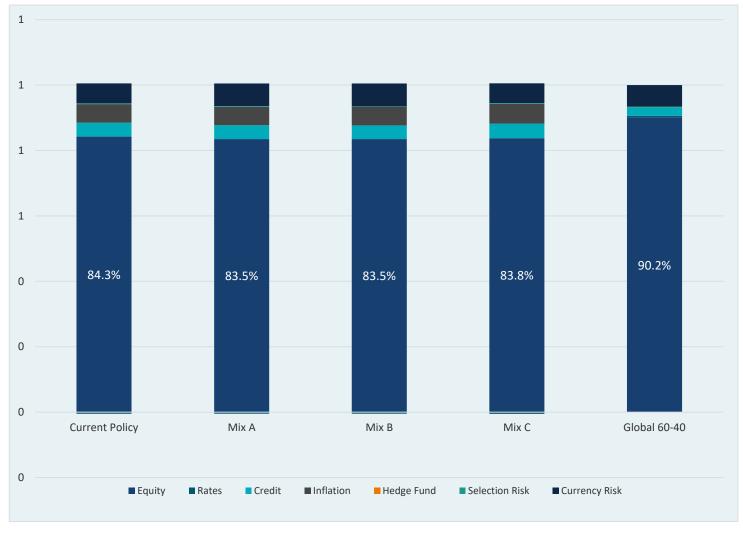

Summary

Analyzing the mixes being considered, we observe:

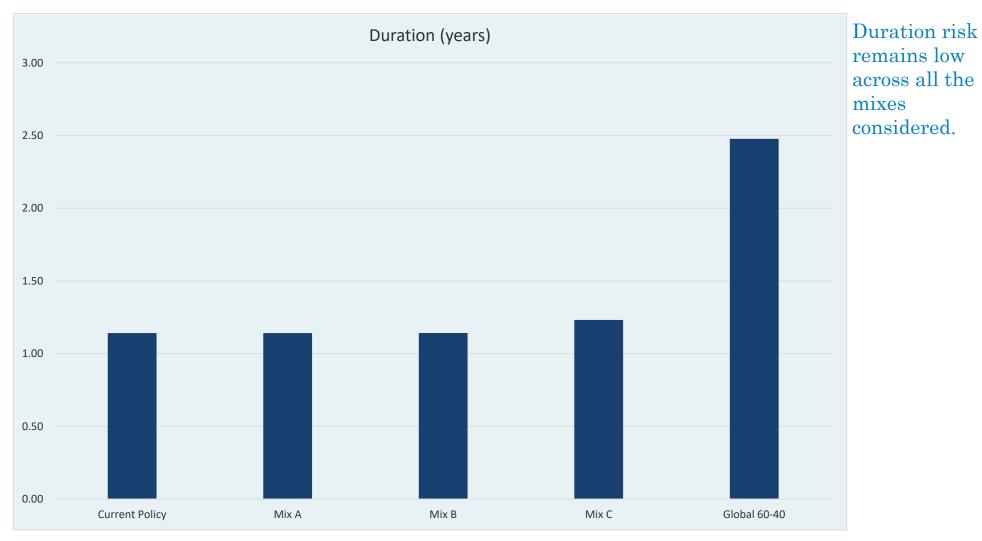
- The proposed asset allocation changes are minor across asset classes
- 2 of the 5 mixes marginally fall outside the board limit for volatility as defined in IPS
- The mixes provide similar levels of equity market sensitivity (beta)
- Similar risk allocation profiles, with equity factors largely driving overall portfolio risk
- Duration risk is not significant risk among mixes considered as it is relatively short across all mixes
- With a high level of market uncertainty in 2023, a mild stagflation environment would be the worst for portfolio performance and a strong rebound would be the best.
- We observe similar performance across asset mixes in most historic scenarios and stress tests


Risk operating zones

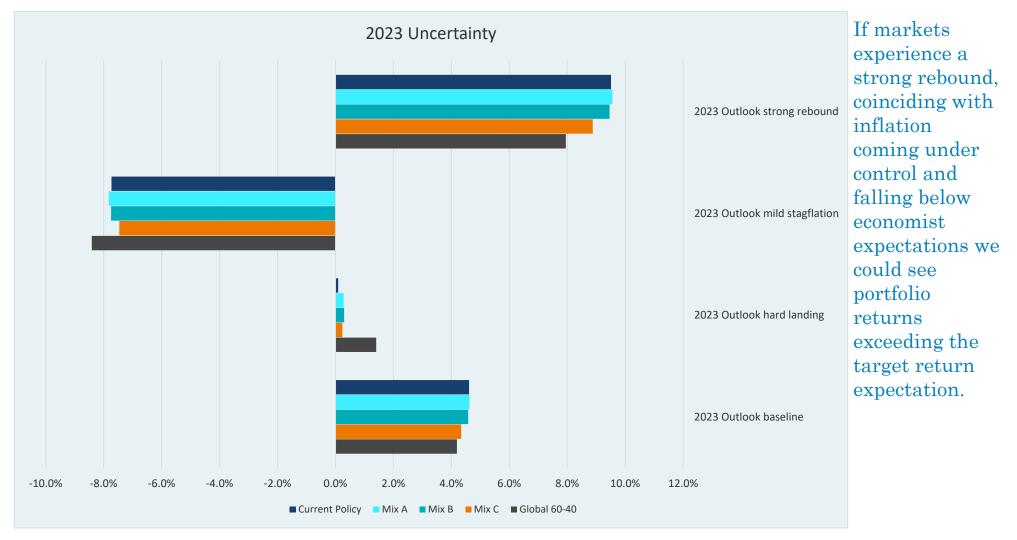
Operating zones are defined in appendix C of the Investment Policy Statement. Data from MSCI BarraOne, MAC.XL model.


Equity beta

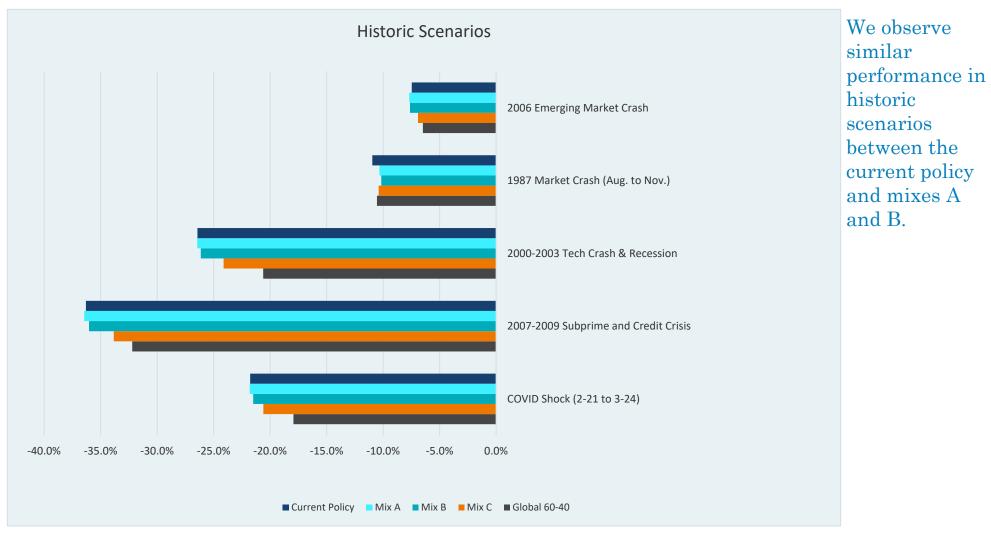
Equity beta is similar across the mixes, ranging from 0.60 to 0.69


Risk decomposition

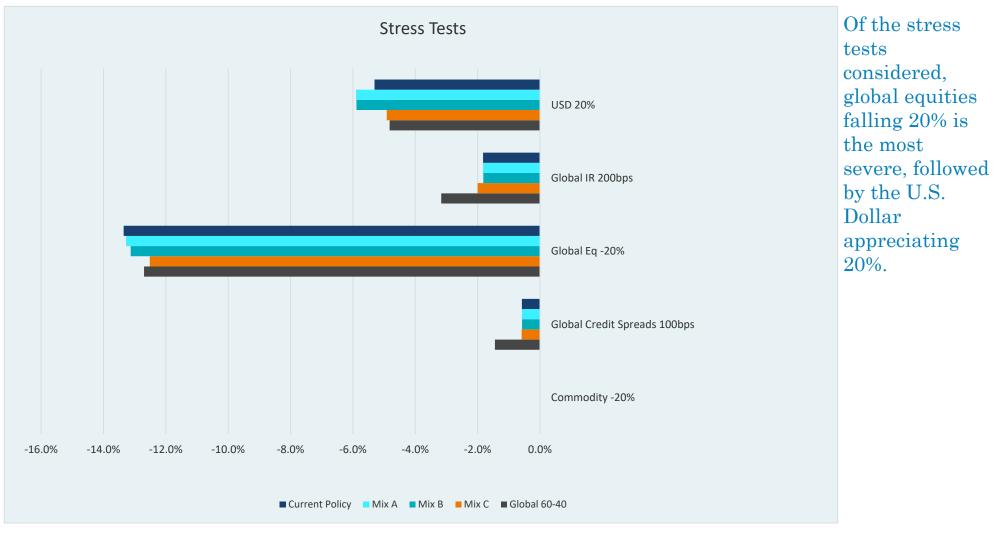
Equity factor risk remains the largest contributor to volatility across all the mixes considered. We see marginal differences in credit, inflation, and currency factors.



Effective duration



Prospective scenarios



Historic scenarios

Stress tests

Navigating 2023 market uncertainty

The macroeconomic landscape for 2023 is shrouded in uncertainty following a tumultuous 2022. The path and influence of central banks' monetary tightening are unclear, and while energy prices have dropped, there are still questions about energy supply and geopolitical tensions. We have laid out four scenarios for investors to gauge the potential impact on their portfolios.

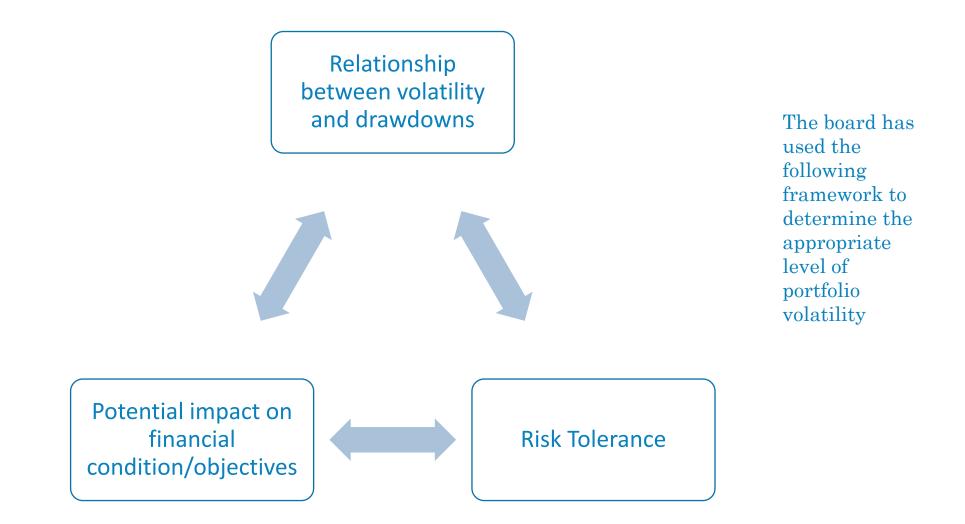
Baseline: Interest rates remain high as inflation stays elevated in 2023. Economic growth in the U.S. is weak but slightly positive, while there is a mild recession in Europe. No additional global downside risks materialize. The U.S. dollar slightly depreciates.

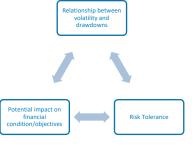
<u>Hard landing</u>: Monetary policy effectively curbs inflation, and the Federal Reserve maintains its credibility, at the cost of a U.S. recession in 2023. The Fed's pivot in response to the recession weakens the U.S. dollar significantly.

<u>Mild stagflation</u>: Central-bank policy does not efficiently tame inflation, eroding central banks' credibility, and inflation becomes entrenched. High prices and interest rates weigh on growth for an extended period. The U.S. dollar strengthens, putting pressure on emerging-market economies.

<u>Strong rebound</u>: Inflation is under control and falls more than economists' consensus expectation, while economic growth surprises on the upside. Current global headwinds get resolved and supply-chain issues ease.

		Baseline	Hard landing	Mild stagflation	Strong rebound
Inflation	USD BEI 2Y	-15 bps	-50 bps	110 bps	0 bps
	EUR BEI 2Y	-20 bps	-55 bps	95 bps	-10 bps
Nominal yields	USD TSY 2Y	-25 bps	-90 bps	125 bps	0 bps
	USD TSY 10Y	-10 bps	-60 bps	80 bps	15 bps
	EUR TSY 2Y	-15 bps	-50 bps	100 bps	0 bps
	EUR TSY 10Y	-10 bps	-30 bps	60 bps	20 bps
Equity	US	6%	-2%	-10%	12%
	Europe	4%	-2%	-10%	8%
	China	10%	-5%	-10%	20%
	India	8%	-5%	-2.50%	20%
	US growth	6%	-5%	-25%	15%
Credit spreads	US IG	0 bps	20 bps	30 bps	-25 bps
Currency	EUR	2%	7%	-7%	5%
	JPY	5%	15%	-5%	10%


Changes in market expectations have highlighted there is significant uncertainty surrounding portfolio outcomes in 2023


10

Determining risk limits

Volatility, drawdowns and risk tolerance

Aggressive Conservative Average 3 worst Portfolio Volatility 95% VaR 95% CVaR 99% VaR 99% CVaR scenarios 8% Risk -14% -17% -18% -20% -19% Conservative 9% Risk -22% -15% -18% -19% -21% 10% Risk -16% -19% -21% -24% -23% 11% Risk -18% -22% -24% -27% -28% Aggressive 12% Risk -20% -25% -27% -31% -32% 13% **Risk** -22% -28% -30% -34% -36% 14% Risk -24% -29% -31% -36% -39% 15% Risk -25% -31% -33% -38% -40%

Risk Tolerance

The board's risk tolerance determines the appropriate level of risk and how expected drawdowns will be estimated

Risk Tolerance

Actuarial projections

Potential impact on financial condition/objectives

elationship betwee volatility and drawdowns

Potential impact on financial condition/objectives

Based on discussions with Verus and Cheiron the board determined there were three actuarial metrics to include in the formulation of their risk limits: Funded Ratio, City Contributions, and Interest cost. Applying drawdowns in 5% increments ranging from 20% to 40%, we can determine the impact on the three metrics.

		Funded Ratio	City Contrib	utions	Inte Cost		Funded Ratio change	City Contribu change		Inter Cost Chan	
,	Baseline	74%	\$	225	\$	75	0%	-	-	\$	-
Хеаг	-20%	63%	\$	341	\$	125	-11%	\$	116	\$	50
>	-25%	60%	\$	362	\$	135	-14%	\$	137	\$	60
Single	-30%	57%	\$	382	\$	146	-17%	\$	157	\$	71
	-35%	54%	\$	402	\$	156	-21%	\$	177	\$	81
	-40%	49%	\$	422	\$	166	-25%	\$	197	\$	91

				City Contri	ibutions	Int Co	erest	Ratio	City Contr chang	ibutions ge	Cos	erest t inge
	(5	Baseline	89%	\$	2,130	\$	597	0%	\$	-	\$	-
2		-20%	75%	\$	2,815	\$	1,087	-14%	\$	685	\$	490
10 <u>-voar</u>	run lative)	-25%	73%	\$	2,961	\$	1,169	-16%	\$	831	\$	571
	_	-30%	71%	\$	3,107	\$	1,250	-18%	\$	978	\$	653
~	(cnmi	-35%	69%	\$	3,261	\$	1,329	-20%	\$	1,131	\$	732
	Ľ	-40%	67%	\$	3,415	\$	1,408	-22%	\$	1,285	\$	810

The Single Year table identifies the maximum or minimum for each category.

The 10-year Cumulative table identifies the end of period financial situation and total dollar amount for each category

Source: Actuarial metrics provided by Cheiron based on 2021 Actuarial Valuation. Dollar amounts in millions

Appendix - Downside measures

We have discussed three methods of determining downside risk (or tail risk) for the investment portfolio.

<u>Value at risk (VaR)</u>: VaR calculates the maximum loss expected over a 1-year period given a specified degree of confidence

<u>Conditional Value at Risk (CVaR)</u>: CVaR measures the expected loss if VaR is exceeded. It takes the average of the tail observations

Average of three worst historical scenarios: We simulate the portfolio through historic scenarios to determine the three worst periods and take the average of those scenarios.

Risk Metric	Description						
95% VaR	(95% Confidence) We don't expect the worst annual loss						
95% Van	to exceed						
99% VaR	(99% Confidence) we don't expect the worst annual loss						
99% Van	to exceed						
95% CVaR	(95% Confidence) If VaR is exceeded, the average						
95% CVan	expected loss						
99% CVaR	(99% Confidence) If VaR is exceeded, the average						
99% CVan	expected loss						
Aug. Sconario Draudouun	The average of the three worst historic scenarios						
Avg. Scenario Drawdown	measured in BarraOne						

There are three methods to calculate VaR: Historic, Parametric, and Monte Carlo. VaR calculations are conducted in BarraOne using Monte Carlo VaR.

